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ABSTRACT 
 

Structural optimization plays a critical role in improving the efficiency, cost-effectiveness, 

and sustainability of engineering designs. This paper presents a comparative study of single-

objective and multi-objective optimization in the structural design process. Single-objective 

problems focus on optimizing just one objective, such as minimizing weight or cost, while 

other important aspects are treated as constraints like deflections and strength requirements. 

Multi-objective optimization addresses multiple conflicting objectives, such as balancing cost, 

with displacement treated as a secondary objective and strength requirements defined as 

constraints within the given limits. Both optimization approaches are carried out using Chaos 

Game Optimization (CGO). While single-objective optimization produces a definitive optimal 

solution that can be used directly in the final design, multi-objective optimization results in a 

set of trade-off solutions (Pareto front), requiring a decision-making process based on design 

codes and practical criteria to select the most appropriate design. Through a real-world case 

study, this research will assess the performance of both optimization strategies, providing 

insights into their suitability for modern structural engineering challenges. 
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1. INTRODUCTION 
 

In the realm of structural engineering, optimization plays a crucial role in enhancing the 

performance, safety, and cost-effectiveness of designs. As structures become increasingly 

complex, engineers are challenged to balance various design objectives while adhering to 

stringent safety standards and regulations. Optimization methods serve as powerful tools that 

 
*Corresponding author: School of Computing, Macquarie University, Sydney, Australia 
†E-mail address: Siamak.TalatAhari@mq.edu.au (S. TalatAhari) 



S. TalatAhari 

 

540 

enable engineers to achieve the best possible design solutions, ensuring that structures meet 

both functional requirements and regulatory constraints [1,2]. This paper focuses on the 

comparative analysis of single-objective and multi-objective optimization techniques, 

exploring their implications for structural design. 

Single-objective optimization is a traditional approach that concentrates on optimizing a 

single parameter, such as minimizing weight, cost, or material usage. While this method 

simplifies the decision-making process, it can inadvertently lead to suboptimal designs, as 

other important performance metrics—such as deflection and strength requirements —are 

treated as constraints rather than objectives, [3]. These constraints are essential for ensuring 

that the final design adheres to safety and performance standards. Here, effectively managing 

constraints is critical yet challenging, as they often involve complex interactions between 

various factors. For instance, meeting the weight reduction objective may lead to designs that 

push the limits of allowable deflection or material strength requirements, which could 

compromise structural integrity.  

Engineers must carefully balance these constraints to ensure that the optimized design is 

not only efficient but also safe and functional, [4]. If constraints are not handled properly, it 

can result in designs that, while optimal for one objective, fail to satisfy critical safety 

requirements, potentially leading to structural failures or performance deficiencies. Also, the 

technique selected for this aim has some effects on the performance of the optimization 

algorithms as well. For instance, when using the penalty method to handle constraints, the 

choice of penalty parameters can greatly influence the optimization process. These parameters 

dictate how severely violations of constraints are penalized, impacting the algorithm's ability 

to navigate the design space effectively, [5]. Given these complexities, understanding and 

effectively managing constraints is crucial in the optimization process, [6-9]. Failure to 

address these challenges may result in suboptimal designs that do not perform as intended. 

This highlights the necessity for more comprehensive approaches, such as multi-objective 

optimization, which can better account for the interplay between objectives and constraints, 

ultimately leading to safer and more effective structural solutions, [10]. 

Defining the problem as a multi-objective optimization empowers engineers to 

simultaneously tackle multiple conflicting objectives, offering a more comprehensive 

approach. This facilitates the consideration of trade-offs among various performance 

aspects—such as cost, displacement, or strength requirements —thereby providing a holistic 

perspective on the design challenges at hand, [11-13]. By employing techniques like Pareto 

optimization, engineers can delineate a set of optimal solutions, known as the Pareto front, 

which illustrates the best possible compromises among competing objectives, [14]. However, 

navigating this complexity presents challenges in decision-making, as choosing the most 

suitable design from the Pareto front necessitates careful evaluation of design codes and 

project requirements, [15]. Furthermore, the performance of multi-objective optimization can 

be influenced by the specific techniques and parameters employed and the strategies used to 

handle constraints [16].  

Although structural optimization has been extensively explored in both single-objective 

and multi-objective formats by numerous researchers, a comprehensive analysis of the 

advantages and disadvantages of these approaches within the field of structural optimization 

has not been thoroughly examined. Therefore, this paper aims to fill this gap by providing a 

detailed study. To ensure a fair comparison, we employ a single method for both single-
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objective and multi-objective optimization problems. This research utilizes Chaos Game 

Optimization (CGO) [17,18] as the foundational technique for both approaches. By 

investigating a real-world case study, we aim to evaluate the effectiveness and applicability 

of each optimization strategy in structural design. The findings will illuminate the strengths 

and weaknesses inherent in both approaches, ultimately offering valuable insights to help 

engineers make informed decisions that balance performance, cost, and safety in 

contemporary structural projects. 

 

 

2. PROBLEM STATEMENT 
 

From a mathematic point of view, a single-objective optimization problem refers to the 

process of optimizing a single performance criterion while considering various constraints, 

[19]. In this problem, the objective function f(x) is minimized (or maximized) subject to a set 

of constraints gi(x) and hj(x). The mathematical formulation can be expressed as follows: 

min 𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔𝑖(𝑥) ≤ 0,   𝑖 = 1,2, … , 𝑚 

ℎ𝑗(𝑥) = 0,   𝑗 = 1,2, … , 𝑝 

(1) 

in which, x is the vector of decision variables; m is the number of inequality constraints and p 

is the number of equality constraints. 

Multi-Objective Optimization problem involves optimizing two or more conflicting 

objectives simultaneously. In this approach, the objective functions fk(x) for k = 1,2,…,n are 

minimized (or maximized) while considering some equality or inequality constraints, [20]. 

The mathematical formulation can be expressed as follows: 

min 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔𝑖(𝑥) ≤ 0,   𝑖 = 1,2, … , 𝑚 

ℎ𝑗(𝑥) = 0,   𝑗 = 1,2, … , 𝑝 

(2) 

where, fk(x) is the kth objective function.  

In structural optimization problems, the primary aim is often to minimize weight [21-25] 
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which can be defined mathematically as: 

min 𝑊 = ∑ 𝜌𝑖. 𝐴𝑖 ∑ 𝐿𝑗

𝑁𝑡

𝑗=1

𝑁𝑑

𝑖=1

     (3) 

where, 𝜌𝑖 and 𝐴𝑖 are the unit weight and length of the design section determined for member 

group 𝑖, respectively; 𝑁𝑡 is the total number of all structural members in group 𝑖 and 𝐿𝑗 is the 

length of the jth member belonging to the ith group.  

Additionally, important performance aspects such as displacement (or drift for buildings) 

need to be considered, which can be defined as a constraint for a single-objective problem: 

- Displacement constraint 

𝐶𝐷
𝑡 = ∆𝑀𝑎𝑥𝐽 − ∆𝑀𝑎𝑥

𝑎 ≤ 0 (4) 

𝐶𝐹
𝑑 = [𝛿𝐽]

𝐹
− [𝛿𝑎]𝐹 ≤ 0 (5) 

A comparison between the maximum lateral displacement of the considered structure in 

the 𝐷th direction for 𝐷 = 1,2, … , 𝑁𝐷 under 𝐽th design load combination, (∆𝑀𝑎𝑥𝐽) regarding 

the maximum allowable lateral displacement (∆𝑀𝑎𝑥
𝑎 ) is provided by Eq. (4). The Eq. (5) 

compares the inter-story drift of the 𝐹th story for 𝐹 = 1,2, … , 𝑁𝐹 (𝑁𝐹 is the total number of 

stories) under the 𝐽th design load combination [𝛿𝐽]
𝐹

 against the related permitted value [𝛿𝑎]𝐹 

, [26]. 

- Strength requirements 

Based on the AISC-LRFD [27] code for steel structure design, the following constraints 

must be fulfilled for the design sections' strength requirements: 

𝐶𝐼𝐸𝐿
𝑖 = [

𝑃𝑢𝐽

𝜑𝑃𝑛
]

𝐼𝐸𝐿

+
8

9
(

𝑀𝑢𝑥𝐽

𝜑𝑏𝑀𝑛𝑥
+

𝑀𝑢𝑦𝐽

𝜑𝑏𝑀𝑛𝑦
)

𝐼𝐸𝐿

− 1 ≤ 0    𝑓𝑜𝑟    [
𝑃𝑢𝐽

𝜑𝑃𝑛
]

𝐼𝐸𝐿

≥ 0.2 (6) 

𝐶𝐼𝐸𝐿
𝑖 = [

𝑃𝑢𝐽

2𝜑𝑃𝑛
]

𝐼𝐸𝐿

+ (
𝑀𝑢𝑥𝐽

𝜑𝑏𝑀𝑛𝑥
+

𝑀𝑢𝑦𝐽

𝜑𝑏𝑀𝑛𝑦
)

𝐼𝐸𝐿

− 1 ≤ 0    𝑓𝑜𝑟    [
𝑃𝑢𝐽

𝜑𝑃𝑛
]

𝐼𝐸𝐿

< 0.2 (7) 

𝐶𝐼𝐸𝐿
𝑣 =

(𝑉𝑢𝐽)𝐼𝐸𝐿

(𝜑𝑣𝑉𝑛)𝐼𝐸𝐿
− 1 ≤ 0 (8) 

where, 𝐼𝐸𝐿 is the element number as 𝐼𝐸𝐿 = 1,2, … , 𝑁𝐸𝐿 and 𝑁𝐸𝐿 is the overall number of 

elements; 𝐽 is the load combination number as 𝐽 = 1,2, … , 𝑁 and 𝑁 is the total number of all 

design load combinations; 𝑃𝑢𝐽 is the required compressive or tensile (axial) strength, under 

𝐽 th design load combination; 𝑀𝑢𝑥𝐽  and 𝑀𝑢𝑦𝐽  are the total flexural strengths required for 

bending of structural elements about 𝑥  and 𝑦 , under the 𝐽 th design load combination, 
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respectively; where for strong and weak axes bending, the 𝑥 and 𝑦 subscripts utilized as the 

relating symbols, respectively. 𝑃𝑛 , 𝑀𝑛𝑥  and 𝑀𝑛𝑦  are the nominal compressive or tensile 

(axial) and flexural (for bending of structural elements about 𝑥 and 𝑦 axes) strengths of the 

𝐼𝐸𝐿th member under consideration. 𝜑  is the axial strength’s resistance factor formulated 

regarding to the yielding of the gross section (0.85 for compression and 0.9 for tension) and 

𝜑𝑏 is the flexural resistance factor (0.9). 𝑉𝑢𝐽 is the shear strength required under 𝐽th design 

load combination and 𝑉𝑛 is the nominal shear strength of the 𝐼𝐸𝐿th considered member and 

𝜑𝑣 is 0.9. 

For multi-objective structural optimization problems, the objectives are often characterized 

by the need to balance several conflicting criteria simultaneously. These objectives typically 

include: 

- Minimizing Weight: this objective is similar to the single objective problem and is 

defined by Eq. 3.  

- Minimizing Lateral Displacement (Drift): Ensuring that the maximum lateral 

displacement under design loads is kept within allowable limits, which is crucial for 

the structural stability and comfort of occupants. 

min 𝐶𝐷
𝑡 = ∆𝑀𝑎𝑥𝐽 − ∆𝑀𝑎𝑥

𝑎 𝐶𝐷
𝑡  (9) 

min 𝐶𝐹
𝑑 = [𝛿𝐽]

𝐹
− [𝛿𝑎]𝐹 (10) 

 

- Controlling strength requirements: In addition to these objectives, it is essential to 

ensure that the stresses within the structural elements remain within allowable limits 

to prevent failure and maintain structural integrity (Eqs. 6-8) . 

 

 

3. A REVIEW ON SINGLE- AND MULTI-OBJECTIVE CHAOS GAME 

OPTIMIZATION 
 

Chaos Game Optimization (CGO) is inspired by the principles of chaos theory and fractal 

geometry [17,18]. This method uses chaotic game concepts to generate solutions for 

optimization problems, offering advantages in terms of exploration and exploitation of the 

solution space. Below, we explore the methods for single-objective and multi-objective 

optimization using CGO. 

3.1 Single-Objective Chaos Game Optimization 

The original CGO is developed for a single objective optimization problem. The method 

generally involves the following steps, [17,18]: 

1. Initialization: A set of initial solutions (seeds) is generated randomly within the 

defined search space. These solutions represent candidate designs for the optimization 

problem. 
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2. Generate a Sierpinski triangle: For each of the eligible seeds in the search space 

(𝑋𝑖), a temporary triangle is drawn with three seeds as follows: 

- The position of the so far found Global Best (𝐺𝐵), 

- The position of the Mean Group (𝑀𝐺𝑖), 

- The position of the ith solution candidate (𝑋𝑖) as the selected seed. 

The 𝐺𝐵 refers to the so far found best solution candidate which has the highest eligibility 

levels and the 𝑀𝐺𝑖 refers to the mean values of some randomly selected eligible seeds with 

an equal probability of including the current considered initial eligible seed (𝑋𝑖). The 𝐺𝐵 and 

𝑀𝐺𝑖 alongside the selected eligible seed (𝑋𝑖) are considered as three vertices of a Sierpinski 

triangle. 

3. Generating New Seeds: The new seeds are generated based on the following four 

equations:  

𝑆𝑒𝑒𝑑𝑖
1 = 𝑋𝑖 + 𝛼𝑖 × (𝛽𝑖 × 𝐺𝐵 − 𝛾𝑖 × 𝑀𝐺𝑖),           𝑖 = 1,2, … , 𝑛𝑠.  (11) 

𝑆𝑒𝑒𝑑𝑖
2 = 𝐺𝐵 + 𝛼𝑖 × (𝛽𝑖 × 𝑋𝑖 − 𝛾𝑖 × 𝑀𝐺𝑖),           𝑖 = 1,2, … , 𝑛𝑠.  (12) 

𝑆𝑒𝑒𝑑𝑖
3 = 𝑀𝐺𝑖 + 𝛼𝑖 × (𝛽𝑖 × 𝑋𝑖 − 𝛾𝑖 × 𝐺𝐵),           𝑖 = 1,2, … , 𝑛𝑠.  (13) 

𝑆𝑒𝑒𝑑𝑖
4 = 𝑋𝑖(𝑥𝑖

𝑘 = 𝑥𝑖
𝑘 + 𝑅),    𝑘 = [1,2, … , 𝑑]       𝑖 = 1,2, … , 𝑛𝑠.  (14) 

where, 𝑋𝑖 is the ith solution candidate, 𝐺𝐵 is the so far found global best, and 𝑀𝐺𝑖 is 

the mean value of some selected eligible seeds. 𝛼𝑖 is the randomly generated factorial 

for modeling the movement limitations of the seeds while each of the 𝛽𝑖  and 𝛾𝑖 

represent a random integer of 0 or 1 for modeling the possibility of rolling a dice. 𝑘 is 

a random integer in the interval of [1. 𝑑] and 𝑅 is a uniformly distributed random 

number in the interval of [0,1], [17]. 

4. Evaluation: Each new solution is checked for boundary condition and then it is 

evaluated based on the defined objective function and selected the constraint handling 

method.  

5. Update Mechanism: The best-obtained solution is replaced with the worst one. 

6. Convergence: The algorithm iteratively generates/updates solutions (steps 2-5) until 

convergence criteria are met (a predefined number of iterations). The best solution 

obtained at the end of this process is considered the optimal solution. 

3.2 Multi-Objective Chaos Game Optimization 

Multi-objective Chaos Game Optimization (CGO) extends the single-objective approach 

by handling multiple conflicting objectives simultaneously, [28,29]. While many of the 

steps—such as initialization, Sierpinski triangle generation, and seed generation equations—

mirror those of the single-objective version, there are critical differences due to the nature of 
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multi-objective optimization. 

1. Initialization: As in the single-objective CGO, a set of initial seeds is generated 

randomly. However, in multi-objective problems, each seed will be evaluated based 

on multiple objectives rather than a single one. 

2. Sierpinski Triangle Construction and Seed Generation: Similar to the single-

objective approach, a Sierpinski triangle is created for each seed using the positions 

of the Global Best, the Mean Group, and a randomly selected candidate seed. The 

equations used to generate new seeds also remain the same. 

3. Evaluation and Pareto Dominance: Unlike the single-objective version, where 

solutions are ranked based on one objective, the multi-objective CGO evaluates each 

solution against multiple objective functions. The concept of Pareto dominance is 

employed here, wherein a solution is considered Pareto optimal if no other solution 

can improve one objective without worsening another. 

4. Update Mechanism and Maintaining Pareto Front: Instead of focusing on a single 

best solution, multi-objective CGO maintains a Pareto front—a set of non-dominated 

solutions. The Pareto front represents the best trade-offs between competing 

objectives. Solutions that do not belong to this front are updated or replaced, ensuring 

that only optimal trade-offs are retained.  

5. Convergence: The algorithm continues iterating until the Pareto front stabilizes, 

either by reaching a maximum number of iterations or when the solution set shows 

little to no improvement in terms of Pareto optimality. 

 

 

4. NUMERICAL STUDY 
 

In this section, we evaluate the performance of single-objective and multi-objective Chaos 

Game Optimization (CGO) using a real-world benchmark structure widely recognized in 

structural optimization. The benchmark example is a 10-story building with 1024 structural 

elements, [5]. For this structure, the total number of design variables is 32. These design 

variables are grouped, meaning that a set of structural members, based on their geometry and 

function, share the same design section. This grouping significantly reduces the number of 

independent variables to optimize, while maintaining structural integrity and performance. 

To ensure a fair comparison between single-objective and multi-objective optimization 

approaches, we have adopted a common penalty function for handling constraints, ensuring 

that both methods similarly penalize constraint violations. Additionally, the number of 

function evaluations is set to 15,000 for both methods to ensure consistency in computational 

effort. The other required parameters for both methods are also kept constant. By maintaining 

these consistent parameters across both methods, this study aims to provide a balanced 

comparison of single-objective and multi-objective optimization for real-world structural 

design problems.  

It should be noted that the final results obtained by both methods should be double-checked 

to ensure that all constraints are satisfied. In the case of the single-objective algorithm, if the 

obtained optimum solution is feasible—i.e., all constraints are met—then the solution is 

considered the final design and can be implemented immediately without further adjustments. 
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However, for the multi-objective method, an additional step is required: decision-making. In 

multi-objective optimization, the result is not a single solution but a set of Pareto-optimal 

solutions, each representing a different trade-off between competing objectives, such as 

weight and deflection. Selecting the most appropriate solution from this set involves carefully 

evaluating the trade-offs, often regarding design codes and project requirements. This 

decision-making process is crucial for ensuring that the chosen design balances performance, 

safety, and cost effectively, while still adhering to the required structural standards. 

 

4.1 10-story Building  

The ten-story frame consists of 1026 members [5]: 580 beams, 96 bracing elements, and 

350 columns. Stability is achieved through inverted X-bracing and moment-resistant 

connections as shown in Fig. 1. For practical manufacturing, the members are grouped into 

32 design variables based on elevation and plan. Columns are divided into five groups, beams 

into outer and inner groups, and bracings into one group. In total, there are 20 column groups, 

8 beam groups, and 4 bracing groups. The ten design load combinations are considered 

including live loads on the floors and roof, along with uniformly distributed dead loads and 

the structure’s weight. Earthquake loads are also added, with base shear proportional to the 

structure's dead load. The beams are braced along their lengths by the floor system, while 

columns and bracings are unbraced. The effective length factor is set to 1 for beams and 

bracings, with specific consideration for buckling in the main direction for columns.  

 

Figure 1: Schematic view of the 10-story building, [30] 

4.2. Results and Discussion  

Fig. 2 illustrates the convergence history of the single-objective CGO algorithm applied to 

the numerical example. The best result weighs 592 tons, with a maximum stress ratio of 

0.9851 and a maximum drift of 0.9915, indicating that the final design is feasible. The 
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algorithm required approximately 7500 evaluations to produce a design weighing less than 

600 tons. The mean value across different runs was 634 tons, which is about 7% higher than 

the best result. The convergence pattern shows that after a certain number of evaluations, the 

algorithm consistently improved the design, indicating a balanced exploration of the design 

space and exploitation of promising solutions. Although convergence slowed down after 

reaching 600 tons, the algorithm demonstrated efficiency in refining the design further. 

Additionally, the low variance between the best and average results across runs suggests that 

the algorithm is robust, reliably producing near-optimal solutions with little deviation.  

 

Figure 2: Convergence history obtained by the single-objective CGO  

Fig. 3 presents the Pareto front generated by the multi-objective CGO for this example. As 

illustrated in Fig. 3(a), the structure's weight ranges from 530 tons to approximately 1500 tons, 

while the maximum drift varies between 0.5 and 1.44. Designs with a maximum drift 

exceeding 1 are not feasible from an engineering perspective, while designs with weights 

greater than 700 tons are inefficient. Therefore, as depicted in Fig. 3(b), the feasible/efficient 

solutions are concentrated around the region where the maximum drift is close to 1. 

The designs within the red circle represent feasible options with a maximum drift value of 

less than 1, making them viable for immediate use. One significant advantage of the multi-

objective method, compared to the single-objective approach, is that it offers multiple 

solutions, allowing the designer to compare them and choose the most appropriate one based 

on other considerations (such as practicality or market demands) not accounted for in the 

optimization process. Furthermore, some valuable solutions lie within the green circle, which 

represents designs with slightly better weight but minor drift violations. In certain scenarios, 

these designs can be considered acceptable or can be adjusted to meet the constraints. These 

solutions provide a broader perspective when compared to fully feasible ones. Another critical 

set of solutions is highlighted in the orange region of Fig. 3(b). For projects where safety is 
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paramount, and a stricter design is preferred, these solutions offer more conservative options 

by avoiding designs that push the drift limit. This region provides safer, more reliable 

solutions.  

 

a) 

 

b) 

 

Figure 3: Pareto front obtained by the multi-objective CGO 

Table 1 presents the best 30 results (based on weight) obtained by the multi-objective 

algorithm. The optimal feasible result weighs 572 tons, which is almost 20 tons lighter than 

the result obtained by the single-objective method. Therefore, the multi-objective approach 
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not only offers flexibility in decision-making but also delivers more efficient designs in terms 

of weight optimization. 

Table 1: The best 30 results (based on weight) obtained by the multi-objective algorithm 

 

It is important to note that the computational cost is higher for the multi-objective algorithm. 

This is due to the need to archive many points on the Pareto front, along with the additional 

computations required for operations like dominance sorting. Despite the higher cost, the 

multi-objective approach provides greater flexibility and appears to be a valuable trade-off. 

When comparing this with the single-objective result, the single-objective CGO focuses solely 

on minimizing weight, which limits the design to a single feasible solution. While the single-

objective CGO ensures a highly optimized result for the given objective, it lacks the flexibility 

and variety of solutions that a multi-objective method offers, where designers can consider 

trade-offs between weight and other factors. In practical terms, the multi-objective approach 

delivers a range of solutions, providing the designer with the flexibility to evaluate multiple 

factors beyond the optimization criteria. This includes safety, practical constraints, and other 

real-world considerations, ensuring a well-rounded and informed decision-making process. 

 

 

 

5. CONCLUSIONS 
 

This study presents a comprehensive comparison between single-objective and multi-

objective optimization approaches for structural design using the Chaos Game Optimization 

(CGO) algorithm. Through the analysis of a real-size benchmark building, the results 

No. 
Max 

Ratio 

Max 

Drift 
Weight No. 

Max 

Ratio 

Max 

Drift 
Weight 

1 1.41 1.00 527.5 16 1.08 0.93 558.6 

2 1.44 0.96 534.2 17 1.07 0.95 558.7 

3 1.42 0.97 537.2 18 1.04 0.91 558.9 

4 1.42 0.98 537.7 19 1.02 0.89 559.9 

5 1.14 0.97 548.0 20 1.07 0.93 559.9 

6 1.16 0.98 549.6 21 1.06 0.92 563.7 

7 1.14 0.93 550.0 22 1.03 0.90 564.7 

8 1.17 0.99 551.7 23 1.04 0.90 566.7 

9 1.13 0.94 552.9 24 0.98 0.90 572.4 

10 1.11 0.94 554.1 25 0.98 0.89 573.3 

11 1.15 0.95 555.2 26 1.01 0.93 573.5 

12 1.15 0.95 555.4 27 1 0.91 574.0 

13 1.04 0.99 555.7 28 1.01 0.91 5747161 

14 1.04 0.99 556.5 29 0.98 0.89 576.7 

15 1.09 0.96 557.0 30 0.98 0.87 583.1 
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demonstrate the distinct advantages and trade-offs of each method. The single-objective CGO 

proved effective in minimizing weight, providing a singular optimal solution that satisfies all 

constraints. However, it lacks the flexibility to explore various trade-offs between conflicting 

objectives, which are often crucial in real-world engineering scenarios. In contrast, the multi-

objective CGO not only optimizes weight but also incorporates other essential factors such as 

structural stability and drift. This method delivers a set of Pareto-optimal solutions, allowing 

designers to balance competing objectives and select designs that best meet practical 

requirements, safety considerations, and market constraints. Despite the higher computational 

cost associated with multi-objective optimization, its ability to provide a range of feasible 

solutions offers significant value, enabling more informed and flexible decision-making in 

structural design. Ultimately, this research highlights the importance of using multi-objective 

optimization in engineering, where trade-offs between various factors need to be considered. 

To sum up, while the multi-objective approach provides a broader perspective, enhanced 

efficiency, and more practical solutions—making it a valuable tool for modern structural 

optimization tasks—there are significant challenges associated with controlling constraints 

and tuning parameters. Additionally, defining objectives in a manner that the optimization 

algorithm can effectively manage, while also ensuring that the solutions produced are usable 

and feasible, presents a key issue when employing multi-objective algorithms. 
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